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The maximum likelihood estimator has been used to extract stability and control derivatives from
flight data for many years. Most of the literature on aircraft estimation concentrates on new develop-
ments and applications, assuming familiarity with basic concepts. This paper briefly discusses the
maximum Tikelihood estimator and the aircraft equations of motion that the estimator uses. The current
strength and limitations associated with obtaining flight-determined aerodynamic coefficients in extreme
flight conditions is assessed. The importance of the careful combining of wind tunnel results (or calcu-
lations) and flight results and the thorough evaluation of the mathematical model is emphasized. The
basic concepts of minimization and estimation are examined for a simple computed aircraft example, and the
cost functions that are to be minimized during estimation are defined and discussed. Graphic represen-
tations of the cost functions are given to help illustrate the minimization process. Finally, the basic
concepts are generalized, and estimation of stability and control derivatives from flight data is
discussed.

Currently, an important thrust in the aerodynamic community is to specify completely the aerodynamic
mathematical model for an aircraft. The ultimate goal of this thrust is to obtain a complete understand-
ing of the physical laws (phenomenology) governing all aspects affecting the behavior of the aircraft.
Presently we fall short of this goal in all flight regimes, but we have a particularly long way to go in
extreme flight regimes, such as transonic or high-angle-of-attack flight, which are typically dominated by
separated flow. As much as possible, we rely on experience and analogies that can be drawn from better
understood regimes, such as subsonic flight with attached flow. But even with this wealth of experience,
we still progress very slowly to the complete understanding of aircraft being flown at extreme flight con-
ditions in complex flow fields.

In traditional regimes of less complex flow fields, certain aspects of understanding a particular phe-
nomenon can sometimes proceed in a simple fashion, more or less ignoring the results of those working in
different but related disciplines. This is not the case for understanding the physical laws that deter-
mine the characteristics of flight dominated by complex separated flows. We must begin by postulating
candidate mathematical models, then test these models with all the techniques available. In addition, new
testing techniques must be developed when existing techniques are not capable of testing portions of the
mathematical model. Currently, the techniques that can contribute to validating the mathematical model
can be divided into three categories: wind tunnel testing, computational fluid dynamic analysis, and
flight testing.

Wind tunnel testing, computational fluid dynamic analysis, and flight testing serve complementary
roles (with some overlap) to the overall validation of the mathematical model. Each category can contri-
bute in a unique way to the overall validation. Quite probably, validation will not be possible without
contributions from each category. System identification and parameter estimation techniques are needed to
analyze flight test data because forces and moments cannot be measured directly. These techniques are
used to extract force and moment coefficients from the motions measured in flight.

This paper discusses ways in which analysis of flight data can contribute to the formulation and test-
ing of the mathematical model. To date, no comprehensive flight results are available for extreme flight
conditions. This paper is intended to inform nonflight specialists of the current state of flight data
coefficient estimation. The references cited in the paper reflect a representative sampling of current
flight results. The paper first points out some of the differences between the approaches used for the
less complicated, traditional flow regimes, and the approaches used for extreme flight conditions in the
separated flow regime. It discusses the interrelationship of the mathematical model, the wind tunnel, and
computational fluid dynamic results, and how they can be used with flight results. Parameter estimation,
which is the primary method of extracting estimated coefficients from flight data so that results can be
used to assess the mathematical model, is described in detail. The description is intended to emphasize
the characteristics (both strengths and weaknesses) of system identification and parameter estimation.

The mathematics involved are avoided wherever possible.

2. SYMBOLS

A,8,C,D,G system matrices Ch coefficient of yawing moment
b reference span, ft c reference chord, ft

Cy coefficient of rolling moment f(+), g9(+) general functions

Cn coefficient of pitching moment GG* measurement noise covariance matrix



Iy Ixzs moment of inertia about subscripted
Iy- I, axis, slug-ft2 A time sample interval, sec
i general index 8 control deflection, deg
J cost function 83 aileron deflection, deg
L rolling moment divided by Iy, deg/sec2 n measurement noise vector
N mean
L roiling moment, ft/1b
1 £ vector of unknowns
m mass, slug
['4 standard deviation
N number of time points or cases
T time, sec
n state nofse vector or number of
unknowns ¢ bank angle, deg
roll rate, deg/sec ¥ heading angle, deg
p
q pitch rate, deg/sec Ve gradient with respect to ¢
a dynamic pressure, 1b/ft2 Subscripts:
r yaw rate, deg/sec e engine
s reference area, ft2 m measured quantity
T time increment. sec pP,r,a,B, partial derivative with respect to
’ é 5.6 subscripted quantity
t time, sec 1Teha
u control input vector 0 bias or at time zero
v forward velocity, ft/sec Other nomenclature:
X state vector - predicted estimate
z observation vector estimate
- > transpose
zg predicted Kalman-filtered estimate
' -
a angle of attack, deg moment, ft-1b
B angle of sideslip, deg

3. PARAMETER ESTIMATION AT EXTREME FLIGHT CONDITIONS

General overviews of the problems of understanding aerodynamics and flight characteristics are given
in Refs. 1 and 2. The issues affecting parameter estimation of flight characteristics and some of the
results are given in Refs. 3 to 5. References 3 and 4 concentrate on estimation of characteristics
obtained in traditional flight regimes not dominated by unsteady aerodynamics.

To appreciate the complexities of validating the mathematical model for flight data obtained at
extreme flight conditions {such as high-angle-of-attack flight, transonic flight, or flight dominated by
separated flow), it is useful to compare it to validation in traditional fiight regimes, such as low angle
of attack, subsonic, well established supersonic, or regimes with all flow essentially attached. The flow
chart in Fig. 1 depicts the general elements required to validate the mathematical model in traditional
flight regimes. Wind tunnel test and computational fluid dynamic calculations are used to design an air-
craft with characteristics that meet the design criteria for a specific aircraft. These data are used
along with information from other disciplines (such as control, structural, thermal, or propulsion charac-
teristics) to define an aircraft. Once the aircraft is built, it will be flight tested. The data acqui-
sition system must be specified based on the type of aircraft and the flight regimes to be flown. The
mathematical model expressed by equations of motion, which is representative of the aircraft dynamic char-
acteristics (usually including stability and control derivatives), is then specified. Representative
forms of the equations of motion are given in Refs. 6 to 8. Then, knowing the mathematical model and the
flight conditions of interest, the pertinent mass characteristics are estimated. At this point, the
maneuvers that are needed for model validation are defined and flown. A parameter estimation technique,
such as a maximum likelihood estimator, is then used to determine the stability and control derivative
estimates from the flight data (Refs. 9 to 11). (Parameter estimation is discussed in detail in a later
section.) These parameter estimates are assessed, summarized, and compared to the best predicted set of
computational and wind tunnel estimates. These predicted estimates may be the data set that was used to
design the aircraft, or they may be that data supplemented with subsequent computational and wind tunnel
results produced after the aircraft design was frozen. The comparison of flight estimates with other
estimates may generate additional flight, computational, or wind tunnel tests. These estimates can then
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be assessed in the same way, as depicted by the flow chart. When all tests are complete and their results
compared, a composite representation of these tests is put in a data base. This data base may be used to
aid in future design or may be put into a real-time simulator to be used for pilot training, control
system redesign, or mission analysis.

In contrast to Fig. 1, Fig. 2 shows the additional complexity involved in the mathematical model vali-
dation for data obtained at extreme flight conditions. Figure 2 represents only the crosshatched area
from Fig. 1. The two figures are to about the same level of detail. Figure 2 is representative of the
process and is not necessarily an exact representation of the procedure followed by any given analyst.

The flow chart of figure 2 not only has more elements, but also is significantly more complex in that the
"flow" between the various elements may need to be iterated more times. In the following sections, each
of the various elements is discussed in detail.

3.1 MATHEMATICAL MODEL SELECTION

Since the primary outcome of the flow chart is the validation of the mathematical model, it is appro-
priate to specify the mathematical model first. Initially, a mathematical model or a set of candidate
mathematical models must be specified. It should be kept in mind that each element of the chart is sub-
Jject to change as the entire flow chart is iterated. The form of the model may be specified by wind tun-
nel tests, as shown in Fig, 2. Probably the most promising set of mathematical models based on strong
phenomenological consideration is given in Ref. 12. The models are derived under the assumptions that
(1) response to a steady motion is itself steady, (2) the response is a single-valued function of the
orientation of the body (although it may be nonlinear), and (3) the responses are l1near in the motion
rates. The authors of Ref. 12 showed how a nonlinear variation of the responses with coning rate could be
accommodated. The models as given do not include the effects of control deflection, Control terms can be
added to the model in a fashion analogous to the way that the flow angle (a and B) terms are included, and
probably would initially be functions of angle of sideslip and angle of attack. Reference 12 also dis-
cusses the inclusion of terms that involve aerodynamic hysteresis. For the mathematical model to have
much generality, it would probably need to account for hysteresis as it is highly probable that hysteresis
occurs at extreme flight conditions. However, regardiess of the initial model chosen, if the subsequent
analysis shows a need for hysteresis terms, they can be added during a future iteration. It is highly
probable that for the gyrations observed at extreme flight conditions, terms involving nonlinear coning
effects and aerodynamic hysteresis would need to be included in the general mathematical model. Refer-
ence 13 discusses how phenomena that violate the restrictions of Ref. 12 can be accommodated within the
mathematical model.

3.2 MASS CHARACTERISTICS

The next element of Fig. 2 is the specification of the mass characteristics. These characteristics
have, in the past, heen given very little consideration in the analysis of data obtained at extreme flight
conditions, because experience gained in the analysis of data obtained in traditional flight regimes has
shown that the data only need to be known to an accuracy of about 10 percent. If an error of 10 percent
in mass characteristics is present in the analysis of traditional flight data, it will probably be noted
when comparing flight results to wind tunnel estimates, and, if necessary, can be compensated for at that
point. However, data obtained at an extreme flight condition is usually highly oscillatory in all axes,
and the kinematic cross-coupling effects are highly dependent on the mass characteristics. The mass is
usually easily determined, but the moments of inertia are difficult to determine accurately. Any error in
accounting for the kinematic coupling terms becomes an error that is added to the remaining terms or the
aerodynamic terms.

The following equations (also given in Refs. 6 to 8) demonstrate this difficulty:

Plx - flyz - ar(ly - 1) - pqlyz = GsbCy (1)
aly - rp(I; - I,) - (r2 - p2)1,, - Nrly, = ascCy (2)
rlz - ply; - pq(iy - Iy) + qrly; + Nqly, = qsbCp (3)

Equations (1) to (3) assume that Iyy and Iyz are zero. The individual kinematic terms (left side of the
equations) are frequently larger than the aerodynamic terms during wild gyrations and spins. Even Cp is
affected by Iy, Iy, 1, Iy,, and Ixe in 2 nonlinear fashion. This is still true when the rates are known

exactly. Iy, Iy. and I, are always significant terms, and Ixz usually is. IXe would affect any aircraft

with a rotating engine. A current challenge is to obtain an accurate set of these moments of inertia to
within less than 1 percent, which may not be within the current state of the art,

It should also be noted that these numbers vary significantly with the amount and location of the
fuel during the maneuver. Since many of the maneuvers of interest result in wild gyrations, an additional
source of error is fuel sloshing. The issues involving fuel quantity and fuel location (sloshing or
otherwise) and the rotating engine mass make unpowered aircraft more attractive as initial candidates for
assessing mathematical models,

Current experience shows that if very detailed calculations are made for the weight, location, and
inertias of each component (no matter how small) of an aircraft, then fairly consistent values of the mass
characteristics are obtained. The other method of obtaining moments of inertia is by swinging the vehicle,
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as discussed in Ref. 14, The author's experience has shown that moments of inertia obtained by swinging a
vehicle are adequate for the traditional regimes if done with extreme care. These experimentally obtained
numbers are in good agreement with calculated numbers when both are done with extreme care. In general,
it seems doubtful that swinging the vehicle will provide adequate accuracy for analysis of an aircraft
during wild gyrations.

3.3 MANEUVER DEFINITION

Definition of the maneuvers to be fiown is the next element of the flow chart. Certain characteris-
tic motions are necessary to assess any given mathematical model. Reference 12 discusses the character-
istic motions required to assess the models it proposes. These characteristic motions can be generated,
at least in theory, in a wind tunnel by using a specific rig, such-as the rotary rig (Ref. 15), Unfortu-
nately, an aircraft always flies close to the trimmed condition, even when undergoing violent gyrations.
The time required for a vehicle to complete a wild gyration, including a spin, is very short; therefore,
these motions provide very 1ittle information because all the state variables are changing rapidly.

Figure 3 shows an example of this for an aircraft entering a spin. In addition, oscillations tend to
repeat a set of state variable values each oscillation. A1l these problems result in trajectories that
repeat, are highly transient, and contain only a small amount of information about the desired charac-
teristic motion. Therefore, no matter how carefully a maneuver to be flown is specified, one has very
1ittle control over how much of the characteristic motion is obtained. This is not to say that one cannot
obtain useful information from careful specification of maneuvers; it simply means that the "matrix" of
test conditions is limited compared to those that can be obtained in the wind tunnel. Although this is an
obvious contribution of wind tunnel testing (a highly controlled experiment), flight test data do have the
advantage of giving exactly the correct motions throughout the flight envelope, regardless of what the
assumed mathematical model is. Even though the aircraft cannot give specific characteristic motions, it
does give a great deal of highly dynamic motion that can result in invaluable information when analyzed
with modern parameter estimation techniques. This information describes the aircraft motion along the
flight trajectory, but it does not completely define the global mathematical model.

One would assume that aerodynamic characteristics (information about the "true" mathematical model)
can be obtained from the combined applicaton of computational, wind tunnel, and flight data analysis tech-
niques that cannot be determined from any single technique.

3.4 INSTRUMENTATION REASSESSMENT

The next element in the flow chart of Fig. 2 is the reassessment of instrumentation. When an aircraft
is flying at an extreme flight condition, the accurate measurement of the flow (flow angles, and dynamic
and static pressure) can be greatly compromised because of separated or vortical flows, or shock waves in
the vicinity of the instrument or sensor. The sensor will normally measure only the local flow, which may
or may not be representative of the free-stream flow. In a highly dynamic gyration, the flow measurement
is likely to be better at one time than it is at another., This suggests that flow measurements should be
made at several locations so that the true free-stream flow can be inferred from the combination of meas-
urements. If a fixed pitot head 1s used when flying at a high angle of attack, the pitot head should be
canted to chtain accurate pressures at high angle of attack. Flow angles can be measured with either
vanes or pressure sensors. Problems can occur with either of these techniques because of the dynamic
characteristics of the vane or the time lags in the pressure sensors. A detailed discussion of flow meas-
urements is beyond the scope of this paper, but it is nonetheless extremely important to obtain accurate
measurements of the flow. It may seem that the free-stream flow conditions could be obtained from iner-
tial measurements. This would be true if one could fly in an airmass that does not move with respect to
the inertial frame of reference. One might occasionally encounter a portion of the airmass that is at
rest, but the rule is that the airmass is constantly in motion. The motion exhibited by winds and turbu-
lence not only varies spatially but also varies as a function of time. This makes it imperative to obtain
external flow measurements if one is to make sense of flight data obtained at extreme conditions. Perfect
flow measurements cannot be made by any intrusive sensor; therefore, one must be able to improve the raw
flow measurements by some means. The next section treats this problem.

3.5 DATA AND TRAJECTORY RECONSTRUCTION

The next element in the flow chart of Fig. 2 is data and trajectory reconstruction, which is sometimes
referred to as consistency checking. This is the generic procedure that is intended to improve the raw
flow measurements. Reconstruction can improve all the measurements in that reconstruction procedures
force the data to conform to the physical Taws of a rigid aircraft. They also reduce the sensor modelling
errors and the sensor measurement noise. Most of these procedures use the extended Kalman filter as the
basic algorithm. The extended Kalman filter provides a very powerful and consistent technique to improve
the aircraft data measurements, but the procedure can be very time consuming because weighting factors
must be determined for each of the measurements. The relative weighting of one measurement to another is
representative of the confidence one has in a given measurement. This confidence can be a function of
vehicle attitude or flow condition, so in most cases it will vary over time and from maneuver to maneuver.
Another difficulty encountered in using the extended Kalman filter is that the filter implementation may
become unstable, forcing the analyst to use ad hoc procedures to stabilize the filter, A complete discus-
sion of data and trajectory reconstruction techniques is beyond the scope of this paper, but a represen-
tative sample of these techniques is given in Refs. 11, 16, and 17.

During the data and trajectory reconstruction phase, measurements obtained from the ground can be used
in conjunction with those obtained on board the aircraft. Figure 2 shows these ground sources as radar
and optical measurements. The primary source of optical data is phototheodolite. In the near future,
data from the Global Positioning System {GPS) will also be available. Radar, optical, and GPS sources are
independent, inertially based data sources that can be used to improve the accuracy of the reconstructed
trajectory. It should be pointed out that data and trajectory reconstruction techniques are also used for



data obtained in the traditional flight regimes. These techniques are used to improve onboard measure-
ments and reduce the measurement noise so that noise-sensitive regression or equation error techniques can
be used. These techniques are discussed thoroughly in Ref. 11.

3.6 MODEL STRUCTURE DETERMINATION

The key element of Fig. 2 is the model structure determination (MSD) element. As shown, it is
strongly coupled with other major elements of the flow chart. The model structure referred to here is
simply another way of stating the form of the mathematical model. The proposed mathematical models of
Ref. 12 are model structures. The concept of this block is slightly more restrictive in that there may
be a targe collection of candidate elements in the mathematical model or model structure. Model structure
determination is the procedure that, by some criterion, selects for the model structure only those terms
that can be accurately estimated from the available flight data. Of course, the model structure can also
be specified by information from computation, wind tunnel, or previous flights. However, the intent of
the MSD element is to further define the model structure based on the information content of the flight
data. That is, the candidate elements of the model structure could be some of those proposed in Ref, 12,
Some elements could be eliminated, or their values fixed, on the basis of wind tunnel tests, such as
rotary balance tests. The candidate elements can be based purely on phenomenological considerations or
they can be based purely on ad hoc considerations.

Most of the MSD algorithms use stepwise regression to assess the effect of individual elements on the
motion observed from a flight maneuver. Some of the proposed MSD algorithms are described in Refs. 7, 18,
and 19. The details of the algorithm are not described here, but a heuristic description is given. The
algorithm is a regression technique in which the individual candidate elements of the proposed mathemati-
cal model are evaluated one by one. The elements are rejected if they have a low correlation with accel-
eration terms or a high correlation based on a given set of flight data to one of the other more signifi-
cant elements. Being rejected indicates that the element makes no significant contribution to explaining
the behavior of the flight data. The stepwise regression technique can be automated to select the best
set of elements from a given maneuver. Independent testing on other data is needed to determine the final
set of elements of the mathematical model. The models that stepwise regression algorithms evaluate fre-
quently use spline formulations with variable knot partitions (break points). This means that the data
are partitioned as a function of the more important aircraft variables, such as angle of attack or eleva-
tor deflection. The stepwise regression algorithm can select the types of candidate elements, including
the spline, as well as the partitions for the flight data.

3.7 RESULT EVALUATION

The next step of Fig. 2 compares the output of the MSD algorithm for several maneuvers and looks for
consistency or inconsistency in the elements being selected. The types of errors that are consistent for
several maneuvers are also examined. The outcome of this step is either (1) that the proposed mathemati-
cal model is in all likelihood a good model and we should proceed to the final analysis of the flight data,
or (2) that the mode! is found lacking and additional elements are required. At this point, the flight
results are compared with the computational and special apparatus wind tunnel results. Inconsistencies in
this comparison may indicate that further modifications to the mathematical model or additional computa-
tional or wind tunnel results are required.

This concludes the discussion of Fig. 2 and how it iterates to converge on a promising mathematical
model before final maximum 1ikelihood estimation analysis is performed. The details of the maximum 1ike-
11hood estimation are given in the next section. Some of the more encouraging results for analysis of
flight data at extreme flight conditions are given in Refs. 5 to 7, and 20 to 25.

In summary, the simplest mathematical model is selected based on physical laws. The types of wind
tunnel apparatuses and tests required are determined based on this model. The results of the tests may
indicate the need for changes in the mathematical model (to make it either less or more complex). Accu-
rate values of the mass characteristics must be obtained as a function of fuel loading. Aircraft maneu-
vers must be defined to stimulate the characteristic motions defined by the mathematical model. The best
instrumentation possible for obtaining data at extreme flight conditions must be defined and installed.
Data and trajectory reconstruction must be performed to improve the flow measurements, to reduce the sen-
sor noise and modelling errors, and to include radar and optical data if available. The simplest model
structure for a given set of data must be determined. This can be done with stepwise regression tech-
niques since the "measurement" noise was reduced in the preceeding step. Elements and coefficient values
from the wind tunnel tests may be used in this step. The consistency between the mathematical model and
data for several maneuvers must be evaluated at this point. If the model is found lacking, the mathemati-
cal model may need to be reevaluated and additional computations or wind tunnel tests may need to be per-
formed. If either of these is necessary, the steps in the flow chart are iterated again to reevaluate the
flight data. If the model is found adequate, we proceed to the final analysis with the maximum Tikelihood
estimator. The model may still be found inadequate at this point, indicating the need for a refinement in
the mathematical model. Once the model is refined, the flowchart steps are interated again.

4. SIMPLE EXAMPLE OF PARAMETER ESTIMATION

In the previous section the overall procedures were discussed for extracting aerodynamic information
from flight data. That discussion contrasted the relative compiexities for analyzing data obtained at
traditional flight conditions with the analysis of data obtained at extreme flight conditions. A param-
eter estimation phase is required for either of these regimes. Parameter estimation techniques are neces-
sary because direct force and moment measurement is not possible for an aircraft in flight. These tech-
niques extract aerodynamic coefficents from aircraft flight motions. The parameter estimation phase is
essentially the same for data obtained in either of these flight regimes. The differences are in (1) the
complexity of the underlying mathematical model that has been assumed, (2) the difficulty in getting the



parameter estimation algorithm to converge, and (3) the interpretation of the results. All of these dif-
ferences pertain to the degree to which the concepts of parameter estimation are involved and not whether
or not the concept is fundamental to the estimation. Therefore, the remainder of the paper illustrates
the concepts involved in applying the parameter estimation algorithms to flight data. The parameter esti-
mation concepts are illustrated with simple models, but the concepts generalize to include the most
complex analysis of data from extreme flight regimes.

The parameter estimation algorithm discussed here is the maximum likelihood estimation algorithm, or
output error method. The theory and formulation of the method are given in Ref., 26, and an example of the
computer code used for this type of analysis is given in Refs, 9 and 10. The mathematical models used in
these examples are the same as those used for analysis in the traditional linear flight regimes for esti-
mating stability and control coefficients. The same estimation algorithm is used whether the mathematical
model formulation is linear or nonlinear.

The models of Ref. 12, including the one that accounts for aerodynamic hysteresis, can be implemented
and the algorithm will remain essentially unchanged. In essence, the model must be written in some func-
tional form. The functional form can be in a piecewise linear or spline form. Increasing the complexity
of the model does not change the essential estimation algorithm, it just increases the complexity of the
implementation and the time required to execute the computer codes. In general, models that are highly
nonlinear, include a very complicated structure, or have a large number of states will require larger and
more complex flight maneuvers to provide satisfactory estimates from any estimation algorithm. Computer
roundoff errors are the only real limitations on how complex the model (written in functional form) can be
or how many unknown aerodynamic coefficients can be determined from high-quality flight maneuvers.

4.1 DESCRIPTION OF A PARAMETER ESTIMATION PROGRAM

The I1iff-Maine code (MMLE3 program) described in Ref. 9 is used throughout the remainder of this
paper to obtain estimates of the coeffictents of the differential equations of motion.

Figure 4 illustrates the maximum 1ikelihood estimation concept for aircraft data as used by MMLE3.
The measured response of the aircraft is compared with the estimated response, and the difference between
these responses is called the response error. The Gauss-Newton computational algorithm (Ref. 26, section
(2.5.2)) s used to find the coefficient values that maximize the likelihood functional. Each iteration
of this algorithm provides new estimates of the unknown coefficients on the basis of the response error.
These new estimates of the coefficients are then used to update the mathematical model of the aircraft,
providing a new estimated response and, therefore, a new response error. The updating of the mathematical
model continues iteratively until a convergence criterion 1s satisfied. The estimates resulting from this
procedure are the maximum 1ikelihood estimates.

The maximum 1ikelihood estimator also provides a measure of the reliability of each estimate based on
the information obtained from each dynamic maneuver. This measure of the reliability, analogous to the
standard deviation, is called the Cramér-Rao bound (Ref. 25) or the uncertainty level. The Cramér-Rao
bound as computed by current programs should generally be used as a measure of relative accuracy rather
than absolute accuracy. The bound is obtained from the approximation of the information matrix (Ref. 26).

4.2 EQUATIONS FOR SIMPLE EXAMPLE

The basic concepts involved in a parameter estimation problem can be illustrated by using a simple
example representative of a realistic aircraft probiem. The example chosen here is representative of
an aircraft that exhibits pure rolling motion from an aileron input. This example, although simplified,
typifies the motion exhibited by many aircraft in particular flight regimes, such as the F-14 aircraft
flying at high dynamic pressure, the F-111 aircraft at moderate speeds with the wing in the forward posi-
tion, and the T-37 aircraft at low speed. The model of this example is linear, but the results from a
more complex example would lead to the same conclusions. A more complex example only makes the basic con-
cepts more difficult to illustrate.

Derivation of an equation describing this motion is straightforward. Figure 5 shows a sketch of an
aircraft with the x-axis perpendicular to the plane of the figure (positive forward on the aircraft). The
rolling moment (L”), roll rate (p), and aileron deflection (63) are positive as shown. For this example,

the only state is p and the only control is 63. The result of summing moments is

Ixp = L*(p,8a) (4)
The first-order Taylor expansion then becomes
P = Lpp * Lgyba (5)
where
L= IxL

Since the aileron is the only control, it is notationally simpler to use & instead of § for the discus-
sion of this example. Equation 5 can then be written as

p=Lpp +Lgs (6)



In the nondimensional form this becomes

Pix = gsb(Cq. B2+ cy 6 (n
P 2v §

The dimensional form of Eq. (6) is used hereafter since it is simpler notationally.

Equatfon (6) is a simple aircraft equation where the forcing function is provided by the aileron and
the damping by the damping-in-roll term, Lp. Equation (7) can be written and solved in the same form as
Fq. (65) of Ref, 12, but the addition of the hysteresis term in Eq. (65) would only complicate the essen-
tial character of the estimation. In subsequent sections we examine in detail the parameter estimation
problem where Eq. (6) describes the system. For this single-degree-of-freedom problem, the maximum like-
lihood estimator is used to estimate either Lp or Lg or both for a given computed time history.

Now that we have specified the equations describing our simple model, we can examine the characteris-
tics of the maximum likelihood estimation in this simple case. Chapters 2, 7, and 8 of Ref. 26 describe
maximum likelihood estimation in detail for the general case. Our simple example requires only a few of
the results from that reference, so those results are repeated briefly below.

Where, as in our example, there is no state noise and the equations of motion are linear, the equa-
tions are

x{tp) = xp (8)
x(t) = Ax(t) + Bu(t) (9)
z(ty) = Cx(ty) + Du(ty) + Gn; (10)

where x is the state vector, z is the observation vector, and u is the control vector.

The maximum 1ikelihood estimator minimizes the cost function

N
ME) = o T lz(ty) - Zg(ty)IMGE*)-1[z{t5) - Zg(tq)) (11)
=1

1
2 .
i

where GG* is the measurement noise covariance, and Zg(tj) is the computed response estimate of z at ti for

a given value of the unknown parameter vector £. The cost function is a function of the difference
between the measured and computed time histories.

To minimize the cost function J(g), we can apply the Newton-Raphson algorithm which chooses successive
estimates of the vector of unknown coefficients, E. Let L be the iteration number. The L + 1 estimate of
€ is then obtained from the L estimate as follows:

fa1 = & - [BoE)] I BD)] (12)

The first gradient is defined as
N
ved(g) = - Tla(ty) - Zg(t1)1%(66%)-10vezg(t)] (13)
i=1

The Gauss-Newton approximation to the second gradient is

N
v80(e) = X [Veg(ti)I*(66*)-1[veze(ti)] (18)
i=1
The Gauss-Newton approximation, which is sometimes referred to as modified Newton-Raphson, is computation-

ally much easier than Newton's method because the second gradient of the innovation never needs to be cal-
culated. 1In addition, it can have the advantage of speeding the convergence of the algorithm.

Equation (11) then gives the cost function for maximum likelihood estimation. The weighting GG* is

unimportant for this problem, so let it equal 1. For our example, Eqs. (9) and (10) become xi = p;j and
zj = xj. Therefore, Eq. (11) becomes

N
Wipots) =23 T [ps - Bi(Lp.Lg) R (15)
i=1

where pj is the value of the measured response p at time tj and PiLlp,Ls) is the computed time history of

p at time tj for Lp = Ep and Lg = fs. Throughout the rest of the paper, where simulated data are used,
the measured time history (simulated) refers to pj. and the computed time history refers to ﬁi(Lp,La).



The computed time history is a function of the current estimates of Lp and Lg, but the measured time
history 1s not. The expression for obtaining pj(Lp,Ls) is given in Ref. 9.

The maximum likelihood estimate is obtained by minimizing Eq. (11). The Gauss-Newton method described
earlier is used for this minimization. Equation (12) is used to determine successive values of the esti-
mates of the unknowns during the m1n1mizatioq. The first and second gradients are defined by Eqs. (13)

and (14). For this simple problem, & = [fp Lg]* and successive estimates of Lp and Lg are determined by
updating Eq. (12).

The entire procedure can now be written for obtaining the maximum 1ikelihood estimates for this simple
example. To start the algorithm, initial estimates of Lp and Lg are needed. This is the value selected
for Eo. With Eq. (12), El and subsequently EL are defined by using the first and second gradients of
J(Lp,Lg) from Eq. (15). The gradients for this particular example from Eqs. (13) and (14) are

" N
ved(&L) = - ¥ (pi - Bi)Vep; (16)
i=1
2., N
VEIEL) = T (eBi)* (Vghi) (17
i=1

With the specific equations defined in this section for this simple example, we can now proceed in the
next section to the computational details of a specific example.

4.3 COMPUTATIONAL DETAILS OF MINIMIZATION

In the previous section we specified the equations for a simple example and described the procedure
for obtaining estimates of the unknowns from a dynamic maneuver. In this section we give the computa-
tional details for obtaining the estimates. Some of the basic concepts of parameter estimation are best
shown with computed data where the correct answers are known. Therefore, in this section we study two
examples involving simulated time histories. The first example is based on data that have no measurement
noise, which results in estimates that are the same as the correct value. The second example contains
significant measurement noise similar to the noise that occurs in data obtained at extreme flight condi-
tions; consequently, the estimates differ from the correct values. Throughout the rest of the paper,
where simulated data are used, the term "no-noise case" is used for the case with no noise added and
“noisy case" for the case where noise has been added.

For this simulated example, 10 time sample points are used. The simulated data, which we refer to as
the measured data, are based on Eq. (6). We use the same correct values of Lp and Lg (-0.2500 and 10.0,

respectively) for both examples. In addition, the same input (&) is used for both examples, the sample
interval (A) is 0.2 sec, and the initial conditions are zero. Tables of all the significant intermediate
values are given for each example. These values are given to four significant digits, although to obtain
exactly the same values with a computer requires the use of 13 significant digits, as in the computation
of these tables. In both examples, the initial values of Lp and Lg (or Eg) are -0.5 and 15.0, respec-
tively. More complete detailed calculations are given in Ref. 8.

4.3.1 Example With No Measurement Noise

The measurement time history for no measurement noise (no-noise case) is shown in Fig. 6. The aileron
input starts at zero, goes to a fixed value, and then returns to zero. The resulting roll-rate time his-
tory is also shown.

For each value of L (number of iterations), we can get g by using Eq. (12). Table 1 shows the values
for fp, EG, and J for each iteration. In three iterations the algorithm converges to the correct values
to four significant digits for both L, and Ls. fs overshoots slightly on the first iteration and then
comes quickly to the correct answer. ﬂp overshoots slightly on the second iteration.

Figure 7 shows the match between the measured data and the computed data for each of the first three

iterations. The match is very good after two iterations. The match is nearly exact after three
iterations.

Although the algorithm has converged to four-digit accuracy in Lp and Lg, the value of the cost func-

tion, J, continues to decrease rapidly between iterations 3 and 4. This is a consequence of using the
maximum 1ikelihood estimator on data with no measurement noise. Theoretically, using infinite accuracy,
the value of J at the minimum should be zero. However, with finite accuracy, the value of J becomes small
but never quite zero. This value is a function of the number of significant digits being used. For the

13-digit accuracy used here, the cost eventually decreases to approximately 0.3 x 10-28,

4.3.2 Example With Measurement Noise

The data used in the example with measurement noise (noisy case) are the same as those used in the
previous section, except that pseudo-Gaussian noise has been added to the roll rate. The time history is
shown in Fig. 8. The signal-to-noise ratio is quite low in this example, as one would expect in data
obtained at extreme flight conditions. This is readily apparent when Figs. 6 and 8 are compared. Table 2



shows the values of [p, fa, and J for each iteration. The algorithm converges in four iterations. The
behavior of the coefficients as they approach convergence is much 1ike the no-noise case. The most
notable result of this case is the converged values of Lp and Lg, which are somewhat different from the
correct values. The difference in converged values is caused by the measurement noise. As stated in
Section 3.5, DATA AND TRAJECTORY RECONSTRUCTION, the parameter estimates can be improved by reducing the
measurement noise. The match between the measured and computed time history is shown in Fig. 9 for each
iteration. No change in the match is apparent for the last two iterations. The match is very good con-
sidering the low signal-to-noise ratio of this example.

In Fig. 10, the computed time history for the no-noise estimates of Lp and Lg is compared to that for
the noisy-case estimates of LP and Ls. Because the algorithm converged to values somewhat different than
the correct values, the two computed time histories are similar but not identical.

4.4 COST FUNCTIONS

In the previous section, we obtained the maximum likelihood estimates for computed time histories by
minimizing the values of the cost function. To fully understand what occurs in this minimization, we must
study in more detail the form of the cost functions and some of their more important characteristics, In
this section, the cost function for the no-noise case is discussed briefly. The cost function of the
noisy case is then discussed in more detail. The same two time histories studied in the previous section
are examined here. The noisy case is more interesting because it has a meaningful Cramér-Rao bound and is
more representative of atrcraft flight data.

First we will look at the one-dimensional case, where Lg is fixed at the correct value, because it is
easier to grasp some of the characteristics of the cost function in one dimension. Then we will Took at
the two-dimensional case, where both Lp and Lg are varying, It is important to remember that everything
shown in this paper on cost functions is based on simulated time histories that are defined by Eq. (5).
For every time history we might choose (computed or flight data), a complete cost function is defined.

For the case of n variables, the cost function defines a hypersurface of n + 1 dimensions. It might occur
to us that we could just construct this surface and look for the minimum, avoiding the need to bother with
the minimization algorithm. However, this is not a reasonable approach because, in general, the number of
variables is greater than two. Therefore, the cost function can be described mathematically but not pic-
tured graphically.

4.4.1 One-Dimensional Case

To understand the many interesting aspects of cost functions, it is easiest to first look at cost
functions having one variable. In an earlier section, the cost function of Lp and Lg was minimized. That

cost function is most interesting in the Lp direction. Therefore, the one-variable cost function studied
here is J(Lp). A1l discussions in this section are for J(Lp) with Lg equal to the correct value, 10,
Figure 11 shows the cost function plotted as a function of Lp for the case where there is no measurement
noise (no-noise case). As expected for this case, the minimum cost is zero and occurs at the correct
value of Lp = -0,2500. It is apparent that the cost increases much more slowly for a more negative Lp
than for a positive Lp. Physically this makes sense since the more negative values of Lp represent cases
of high damping, and the positive Lp represents an unstable system. Therefore, the p; for positive Lp
becomes increasingly different from the measured time history for small positive increments in Lp.

In Fig. 12, the cost function based on the time history with measurement noise (noisy case) is plotted
as a function of Lp. The correct value of Lp (-0.2500) and the value of Lp (-0.3218) at the minimum of
the cost (3.335) are both indicated on the figure. The general shape of the cost function in Fig. 12 is
similar to that shown in Fig. 11, Figure 13 shows the comparison between the cost functions based on the
noisy and no-noise cases. The comments relating to the cost functions' dependence on Lp error in the
no-noise case also apply to the cost function based on the noisy case. Figure 13 shows clearly that the
two cost functions are shifted by the difference in the value of L, at the minimum and increased by the
difference in the minimum cost. The difference shown here illustrates the penalty if one does not pay
close attention to reducing the measurement noise. A similar shift would occur if an incorrect model were
used. This was discussed earlier in reference to data reconstruction.

Figure 14 shows the gradient of J(Lp) plotted as a function of Lp for the noisy case. This is the

function for which we were trying to find the zero (or equivalently, the minimum of the cost function)
ustng the Gauss-Newton method that is discussed in a previous section. The gradient is zero at Lp =
-0.3218, which corresponds to the value of the minimum of J(Lp).

The usefulness of the Cramdr-Rao bound was discussed earlier. At this point it is useful to digress
briefly to discuss some of the ramifications of the Cramér-Rac bound for the one-dimensional case. The
Cramér-Rao bound has meaning only for the noisy case. In the noisy example, the estimate of Lp is -0.3218

and the Cramér-Rao bound is 0.0579, This relatively large value of the Cramdr-Rao bound is caused by the
low signal-to-noise ratio (data from extreme flight conditions) for this case. The Cramér-Rao bound
indicates that we are getting a poor estimate of the rate-dependent coefficient Lp. The Cram&r-Rao bound

is an estimate of the standard deviation of the estimate. One would expect the scatter in the estimates
of Lp to be of about the same magnitude as the estimate of the standard deviation. For the one-

dimensional case discussed here, the range of Lp (-0.3218) plus or minus the Cramér-Rao bound (0.0579)
nearly includes the correct value of Lp (-0.2500)., If noisy cases are generated for many time histories
(adding different measurement noise to each time history), then the sample mean and sample standard
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deviation of the estimates for these cases can be calculated, Table 3 gives the sample mean, sample stan-
dard deviation, and the standard deviation of the sample mean (standard deviation divided by the square
root of the number of cases) for 5, 10, and 20 cases. The sample mean, as expected, gets closer to the
correct value of -0,2500 as the number of cases increases. This is also reflected by the decreasing
values column of Table 3, which are estimates of the error in the sample mean. The next to last column of
Table 3 shows the sample standard deviations, which indicate the approximate accuracy of the individual
estimates. This standard deviation, which stays more or less constant, is approximately equal to the
Cramér-Rao bound for the noisy case being studied here. In fact, the Cramér-Rao bounds for each of the
20 noisy cases used here (not shown in the table) do not vary significantly from the values found for the
noisy case being studied. Both of these results are in good agreement with the theoretical characteris-
tics (Ref. 27) of the Cramér-Rao bounds and maximum 1ikelihood estimators in general.

The examples shown here indicate the value of obtaining more sample time histories (maneuvers).
More samples improve confidence in the estimate of the unknowns. The same result holds true in analyzing
actual flight time histories (maneuvers); thus it is always advisable to obtain several maneuvers at a
given flight condition to improve the best estimate of each derivative. This is especially true when ana-
lyzing data obtained at extreme flight conditions.

The size of the Cramér-Rao bounds and of the error between the correct value and the estimated value
of Lp is determined to a large extent by the length of the time history and the amount of noise added to
(or modeling error present in) the correct time history. For the example being studied here, it is
apparent from Fig. 8 that the amount of noise being added to the time history is large. The effect of the
power of the measurement noise (GG*, Egs. (9) and {10)) on the estimate of Lp for the time history is
given in Table 4. The estimate of Lp is much improved by decreasing the measurement noise power. A
reduction in the value of G to one-tenth of the value in the noisy example being studied yields an accep-
table estimate of Lp. For flight data, the measurement noise is reduced by improving the accuracy of the
output of the measurement sensors or through data and trajectory reconstruction, as discussed in an ear-
lier section.

4.4.2 Two-Dimensional Case

In this section, the cost function (dependent on both Lp and Lg) is studied. The no-noise case is
examined first, followed by the noisy case.

Even though the cost function is a function of only two unknowns, it becomes much more difficult to
visualize than the one-unknown case. The cost function over a reasonable range of Lp and Lg is shown in
Fig. 15. The cost increases rapidly in the region of positive Lp and large values of Ls. The reason is
just an extension of the argument for positive Lp given in the previous section. The shape of the surface
can be depicted in greater detail if we examine only the values of the cost function less than 200 for Lp
less than 1.0, Figure 16 shows a view of this restricted surface from the upper end of the surface, The
minimum must 1ie in the curving valley that gets broader as we go to the far side of the surface. Now
‘that we have a picture of the surface, we can look at the isoclines of constant cost on the Lp-versus-Lg
plane, These isoclines are shown in Fig. 17. The minimum of the cost function is inside the closed
isocline. The steepness of the cost function in the pos1t1ve-Lp direction is once again apparent. Inside
the closed isocline the shape is more nearly elliptical, indicating that the cost is nearly quadratic
here, so fairly rapid convergence in this region would be expected. The Lp axis becomes an asymptote in
cost as Lg approaches zero. The cost is constant for Lg = 0 because no response would result from any
aileron input. The estimated response is zero for all values of Lp, resulting in constant cost.

Figure 17 includes the minimum value of the cost function, which, as seen in the earlier example
(Table 1), occurs at the correct values for Lp and Lg of -0.2500 and 10.0, respectively. This is also evi-
dent from the cost function surface shown in Fig. 18. The surface has its minimum at the correct value.
As expected, the value of the cost function at the minimum is zero.

Sometimes nonestimation specialists get the impression that the final estimate of a parameter (stabi-
lity and control coefficient) is dependent on the starting value, but this is not the case for the maximum
likelihood estimator. If the maximum 1ikelihood estimator is used to obtain the maximum 1ikelihood esti-
mates, the estimate will be the minimum of the cost function, as shown in Figs. 13, 16, and 18. These
minima are independent of the starting values. If the estimation technique includes a priori informa-
tion in the cost function (such as a maximum a posteriori estimator), the minimum value is affected by a
priori estimates of the coefficient. Usually the a priori value is used as the starting value for maximum
likelihood estimators, leading some to the conclusion that the estimate is a function of the starting
values for all estimators. For all cases that are discussed in this paper the minimum of the cost func-
tion is independent of the starting value. Of course, the further one starts the algorithm from thc mini-
mum value, the longer it takes the algorithm to converge. Therefore, especially for data obtained at
extreme flight conditions, it is important to have good wind tunnel and computational fluid dynamic esti-
mates. These other estimates also can prove useful for fixing values of coefficients of the estimates as
we did Lg in the one-dimensional case, This information can also be used in the maximum a posteriori
estimators,

As shown before in the one-dimensional case, the primary difference between the cost functions for the
no-noise and noisy cases was a shift in the cost function. In that instance, the noisy case was shifted
so that the minimum was at a higher cost and a more negative value of Lp. In the two-dimensional case,
the no-noise and noisy cost functions exhibit a similar shift. For two dimensions, the shift is in both
the Lp and Lg directions. The shift is small enough that the difference between the two cost functions
is not visible at the scale shown in Fig., 15 or from the perspective of Fig. 16, Figure 19 shows the
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jsoclines of constant cost for the noisy case. The figure looks much like the isoclines for the no-noise
case shown in Fig. 17. The difference between Figs. 17 and 19 is a shift in Lp of about 0.1, This is

the difference in the value of Lp at the minimum for the no-noise and noisy cases., Heuristically, one can

see that the same would be true for cases with more than two unknowns. The primary difference between the
two cost functions is near the minimum.

The next logical part of the cost function to examine is near the minimum. Figure 20 shows the same
view of the cost function for the noisy case as was shown in Fig. 10 for the no-noise case. The shape
is roughly the same as that shown in Fig. 18, but the surface is shifted such that its minimum lies over
Lp = -0.3540 and Lg = 10,24, and is shifted upward to a cost function value of approximately 3.3.

To get a more precise idea of the cost of the noisy case near the minimum, we once again need to exa-
mine the isoclines. The isoclines (Fig. 21) in this region are much more like ellipses than they are in
Figs. 17 and 19. We can follow the path of the minimization example used before by including the results
from Table 2 on Fig. 2, The first iteration (L = 1) brought the values of Lp and Lg very close to the
values at the minimum. The next iteration essentially selected the values at the minimum when viewed at
this scale. One of the reasons the convergence is so rapid in this region is that the isoclines are
nearly elliptical, indicating that the cost is very nearly quadratic in this region, Had we started the
Gauss-Newton algorithm at a point where the isoclines are much less elliptical (as in some of the border
regions in Fig. 19), the convergence would have been much slower initially, but much the same as it
entered the nearly quadratic region of the cost function. The process, of course, results in the same
minimum regardless of the starting values.

A final point to be made in examining cost functions deals with the relative shape of the cost func-
tion. Although these shapes are somewhat apparent in Figs. 15, 16, and 17, they are most readily studied
for constant-cost isoclines as in Figs, 19 and 21. The result we want here is related to the steepness
of the cost near the minimum. The minimum shown in Fig. 21 occurs at a cost of 3.3. If we project the
isocline for the cost of J =5 onto the Lp axis, we intersect values for Lp of approximately 0 and =0.7,
This is a small increase in cost (about 50 percent), yet the values spanned for Lp are +100 percent of
the noise-contaminated estimate. If we project the same isocline onto the Lg axis, we intersect values
for Lg of approximately 9 and 11. This is only a change of about 10 percent for the same increase in
cost. This shows that the rate-dependent coefficient L, has a much flatter shape near the minimum than
does the control derivative Lg, which means that relative accuracy in estimating Lp is much poorer than
for Lg. This result can be generalized for all the rate-dependent- coefficients as compared with the
primary stability and control coefficients, such as Lg, Ng, and Lg. Going one step further, the cross and

cross-coupling coefficients (such as Lp or Lé) are even flatter near the minimum than are the rotary coef-
ficients (such as Lp and N.). This fact points out the necessity of obtaining the best possible esti-
mates from other predictive techniques for rate-dependent coefficients. These coefficients can be
estimated from rotary balance or forced oscillation tests. It remains to be seen if these wind tunnel
estimates will be more accurate than the flight-determined estimates. Currently the thought is that each
source of these coefficients will have deficiencies, but with information from both sources we may be able
to determine the relative importance of accurate values of the coefficients in defining a good model. One
final item on the relative flatness of the cost functions is that the flatness can be reduced by (1)
increasing the length of the flight maneuver, (2) reducing the number of unknown coefficients (fixing the
values at computed or wind tunnel values), (3) reducing the noise in the instrumentation system through
better instruments or through data reconstruction, (4) reducing equation errors with better estimates of
the mass characteristics, and (5) increasing the information content of the maneuver by defining and
flying specifically designed maneuvers at extreme flight conditions.

Before concluding our examination of the two-dimensional case, we need to examine the Cramér-Rao bound,
Figure 22 shows the uncertainty ellipsoid, which is based on the Cramér-Rao bounds defined in an earlier
section. The relationships between the Cramér-Rao bound and the uncertainty ellipsoid are discussed in
Ref. 27. The uncertainty ellipsoid almost includes the correct value of Lp and Lg. The Cramér-Rao bound
for Lp and Lg can be determined from the projection of the uncertainty ellipsoid onto the Lp and Lg axes,
and compared with the values of the Cramér-Rao bound, which are 0.1593 and 1.116 for Lp and Lg,
respectively.

5. CONCLUDING REMARKS

This paper discusses the increased complexity and effort required in comparing parameter estimation in
the traditional and extreme flight regimes. The analysis in the extreme flight regimes requires more care
and understanding in selecting the mathematical model, the mass characteristics, the maneuvers flown, and
the type and location of instrumentation sensors. Additional analytical techniques, such as data and tra-
jectory reconstruction and model structure determination, are needed. The evaluation of results is also
more complex, and several iterations may be required to evaluate the mathematical model. The essential
characteristics of the maximum 1ikelihood estimation technique are studied with the help of a simple, but
representative, simulated aircraft flight example. The basics of minimization and the general concepts of
cost functions are discussed. The example showed the value of low measurement noise, multiple estimates
at a given flight condition, and the Cramdr-Rao bounds. The relative flatness of the cost functions in
the direction of the rate-dependent coefficients is demonstrated. This flatness is shown to result in
poor estimation of these coefficients. The need for a close interplay between computation, wind tunnel,
and flight analysis is also discussed.
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Table 1 Pertinent values for Table 2 Pertinent values for noisy
no-noise case as a function of iteration as a function of iteration
L p(L) Cs(L) A L Gpry  f4(1) J
0 -0.5000 15,00 21.21 0 -0.5000 15.00 30.22
1 -0.3005 9.888 0.5191 1 -0.3842 10.16 3.497
2 -0.2475 9,996 5,083 x 10-4 2 -0.3518 10,23 3.316
3 -0,2500 10.00 1.540 x 10-9 3 -0.3543 10.25 3.316
4  -0,2500 10,00 1.060 x 10-14 4  -0,3542 10.24 3.316
5 -0.3542 10.24 3.316

Table 3 Mean and standard deviations for estimates of Lp

Sample standard

Number of Sample mean, Sample standard deviation of the
cases, N u(Llp) deviation, o(fp) mean, a(fp)/ YN
5 . -0.2668 0.0739 0.0336
10 -0,2511 0.0620 0.0196
20 -0.2452 0.0578 0.0129

Table 4 Estimate of Lp and Cramér-Rao bound as
a function of the square root of noise power

Square root of  Estimate  cramér-Rao

noise power, G of L bound
0.0 -0,2500 ——-—---
0.01 -0.2507 0.00054
0.05 -0.2535 0.00271
0.10 -0.2570 0.00543
0.2 -0,2641 0,0109
0.4 -0.2783 0.0220
0.8 -0.3071 0.0457
1.0 -0,3218 0,0579
2.0 -0.3975 0.1248
5.0 -0.6519 0.3980
10.0 -1.195 1.279
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Fig. 2 Approach to val_id;‘,ing mathematical model
at extreme flight conditions.
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